高二数学知识点总结梳理分享_高二数学导数知识点总结归纳

访客 心得与体会 2024-10-29 17:17:13

高二数学知识点总结梳理五篇分享

总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,让我们一起来学习写总结吧。你想知道总结怎么写吗?以下是小编整理的高二数学知识点总结梳理五篇分享,欢迎阅读与收藏。

高二数学知识点总结梳理五篇分享1

一、直线与圆:

1、直线的倾斜角的范围是

函数的概念10分钟说课模板

在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;

2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

过两点「x1,y1」,「x2,y2」的直线的斜率k=「y2-y1」/「x2-x1」,另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,

⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

4、直线与直线的位置关系:

「1」平行A1/A2=B1/B2注意检验「2」垂直A1A2+B1B2=0

5、点到直线的距离公式;

两条平行线与的距离是

6、圆的标准方程:.⑵圆的一般方程:

注意能将标准方程化为一般方程

7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用「如半径、半弦长、弦心距构成直角三角形」直线与圆相交所得弦长

二、圆锥曲线方程:

1、椭圆:①方程「a>b>0」注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

2、双曲线:①方程「a,b>0」注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F「,0」,准线x=-;③焦半径;焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

三、直线、平面、简单几何体:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

「1」在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°「或135°」;

「2」平行于x轴的线段长不变,平行于y轴的线段长减半.

「3」直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

3、表「侧」面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明「主要方法」:注意立体几何证明的书写

「1」直线与平面平行:①线线平行线面平行;②面面平行线面平行。

「2」平面与平面平行:①线面平行面面平行。

「3」垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:「步骤-------Ⅰ.找或作角;Ⅱ.求角」

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

高二数学知识点总结梳理五篇分享2

等差数列

对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:

将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列

对于一个数列{an},如果任意相邻两项之商「即二者的比」为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

那么,通项公式为「即a1乘以q的「n-1」次方,其推导为“连乘原理”的思想:

a2=a1_,

a3=a2_,

a4=a3_,

````````

an=an-1_,

将以上「n-1」项相乘,左右消去相应项后,左边余下an,右边余下a1和「n-1」个q的乘积,也即得到了所述通项公式。

此外,当q=1时该数列的前n项和Tn=a1_

当q≠1时该数列前n项的和Tn=a1_1-q^「n」」/「1-q」.

高二数学知识点总结梳理五篇分享3

等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4「其中a为直角边,c为斜边,h为斜边上的高」。

面积公式

若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

S=ab/2。

且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

S=ch/2=c2/4。

等腰直角三角形是一种特殊的三角形,具有所有三角形的.性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

高二数学知识点总结梳理五篇分享4

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/「x0」表示过曲线y=f「x」上P「x0,f「x0」」切线斜率。V=s/「t」表示即时速度。a=v/「t」表示加速度。

3.常见函数的导数公式:

4.导数的四则运算法则:

5.导数的应用:

「1」利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

「2」求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

「3」求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高二数学知识点总结梳理五篇分享5

「1」总体和样本

①在统计学中,把研究对象的全体叫做总体.

②把每个研究对象叫做个体.

③把总体中个体的总数叫做总体容量.

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量.

「2」简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随

机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同「概率相等」,样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

「3」简单随机抽样常用的方法:

①抽签法

②随机数表法

③计算机模拟法

在简单随机抽样的样本容量设计中,主要考虑:

①总体变异情况;

②允许误差范围;

③概率保证程度。

「4」抽签法:

①给调查对象群体中的每一个对象编号;

高二数学知识点总结1000字

②准备抽签的工具,实施抽签;

③对样本中的每一个个体进行测量或调查

版权声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

分享:

扫一扫在手机阅读、分享本文